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Purpose of review

Gastrointestinal and pancreatic neuroendocrine tumors (GEP-NETs) originate from

cells of the diffuse endocrine system. Most GEP-NETs are sporadic, however, some of

them, especially pancreatic endocrine tumors, may occur as part of familial syndromes.

The genetic and molecular pathology of neuroendocrine tumor development is

incomplete and remains largely unknown. However, the WHO classification introduced

in clinical practice will give more insight into genetic and molecular changes related to

tumor subtypes.

Recent findings

In sporadic endocrine pancreatic tumors, losses of chromosome 1 and 11q as well as

gain on 9q appear to be early invents in development of pancreatic tumors because they

are already present in small tumors. Multiple genetic defects may accumulate with time

and result in pancreatic neuroendocrine tumor progression and malignancy.

Gastrointestinal endocrine tumors (carcinoids) show predominantly genetic alterations

concentrated on chromosome 18. There are losses of the entire chromosome as well as

smaller deletions. The most frequently reported mutated gene in gastrointestinal

neuroendocrine tumors is b-catenin. Overexpression of cyclin D1 and cMyc has also

been reported. Recently, a set of genes NAP1L1, MAGE-2D and MTA1 has been

correlated with malignant behavior of small intestinal carcinoids.

Summary

Molecular profiling of GEP-NETs demonstrates that pancreatic endocrine tumors and

gastrointestinal neuroendocrine tumors (carcinoids) display different genetic changes

and should, therefore, be considered to be different tumor entities; thereby, also

differently managed clinically. Although the number of genetic changes is higher in

malignant tumors, we are still far away from defining a malignant profile in GEP-NETs.
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Introduction
Gastrointestinal and pancreatic neuroendocrine tumors

(GEP-NETs) originate from cells of the diffuse endo-

crine system. They comprise approximately 2% of all

malignant gastrointestinal tumors. Most GEP-NETs are

sporadic, however, some of them, especially pancreatic

endocrine tumors, may occur as part of familial tumors

(inherited syndromes) such as multiple endocrine neo-

plasia type 1 (MEN1 syndrome), von Hippel-Lindau

disease (VHL), neurofibromatosis type 1 (NF-1) and

tuberous sclerosis (TSC) [1]. The tumors are rather rare

and heterogeneous, and it is difficult to predict their

behavior and prognosis. Several different tumor classifi-

cation systems have been used. The tumors are com-

monly divided into functional (a hormone-related clinical
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syndrome) or nonfunctional (no hormone-related

symptoms). Classification of the gastrointestinal neuro-

endocrine tumors (GI-NETs) has been based on the

embryology and are divided into foregut (stomach and

first part of the duodenum), midgut (small intestine:

second portion of duodenum, jejunum, ileum, appendix

and ascending colon) and hindgut (transverse and des-

cending colon and rectum) [2]. This old type of classi-

fication is abandoned today, and the WHO classification

of endocrine tumors from 2000 attempts to divide these

into well differentiated endocrine tumors (benign or

uncertain behavior), well differentiated endocrine carci-

nomas (low-grade malignant behavior) and poorly differ-

entiated endocrine carcinomas (high-grade malignant

behavior) [3]. This classification has further been refined
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Table 1 Inherited genetic neuroendocrine syndromes

Syndrome Gene location (product) NET frequency (tumor type)

MEN1 11q13 (610-amino acid protein, Menin) 80–100% pancreasþduodenum
(NF>gastrinoma> insulinoma)

gastric carcinoids
von Hippel–Lindau disease 3p25.5 (213-amino acid protein, VHL) 12–17% pancreas (all nonfunctioning)
von Recklinghausen’s

disease (NF-1)
17q11.2(2485-amino acid protein, neurofibromin) 6% pancreatic (somatostatinoma)

TSC 9q34, (TSC1) 16p 13.3 (TSC2) (hamartin, tuberin) <5% pancreas

MEN1, multiple endocrine neoplasia type 1; NET, neuroendocrine tumor; NF-1, neurofibromatosis type 1; TSC, tuberous sclerosis; VHL, von Hippel-
Lindau.
(ENETS) with a TNM classification and grading system

[4,5�]. The molecular genetic mechanism of neuroendo-

crine tumor development is complex and remains largely

unknown. However, the new classification will give new

insight into specific genetic and molecular changes

related to tumor subtypes.
Genetics in endocrine pancreatic tumors
Most pancreatic neuroendocrine tumors occur sporadi-

cally (90%) Table 1. However, they may be part of four

hereditary syndromes: MEN1, VHL, von Recklinghau-

sen’s disease (NF-1) and TSC [1]. The MEN1 syndrome

includes the following clinical components: primary

hyperparathyroidism (>95%) due to parathyroid hyper-

plasia or adenoma, pancreatic endocrine tumors (25–

80%), pituitary tumors (20–40%) and adrenocortical ade-

nomas (10–15%). Apart from these manifestations,

neuroendocrine tumors of thymus, lung, stomach and

duodenum occur as well as lipomas and ependymomas

[6,7]. The MEN1 syndrome is a result of an inactivating

mutation of the MEN1 gene, localized on chromosome

11q13 (Menin gene), which is a tumor suppressor gene

[8]. MEN1 pancreatic neuroendocrine tumors (NETs)

are located in both pancreas and duodenum with an

incidence of 80–90%. Most common are nonfunctioning

pancreatic NETs followed by gastrinomas and insulino-

mas [6]. Multiple tumors in the target organs are caused

by a germline MEN1 gene mutation, followed by a loss of

the wild-type allele. MEN1 gene alteration is an import-

ant initiating event in about one-third of sporadic non-

functioning pancreatic NETs, insulinomas and gastrino-

mas and is present in the tumor regardless of the size and

presence or absence of metastases [9,10]. Somatic MEN1
gene mutations accompanied by a loss of the wild-type

allele are demonstrated in 10–27% of insulinomas and

39–45% of gastrinomas [11,12]. The mutation rate in

nonfunctioning NETs is reported to be 15–26%. The

rate of 11q13 loss of heterozygosity (LOH) in sporadic

pancreatic NETs is about 46%, and LOH is not always

accompanied by somatic mutation, therefore, other

mechanisms of MEN1 gene inactivation or other genes

may play a role in sporadic tumor development [13–15].

Studies are indicating that additional onco/suppressor

genes may reside at 11q distal to the MEN1 gene and
opyright © Lippincott Williams & Wilkins. Unauth
may play a role in the pathogenesis of pancreatic NETs

[15].

VHL disease patients develop central nervous system

(CNS) and retinal hemangiomas, renal cysts and carci-

nomas, pancreatic and epididymal cystadenomas and

pheochromocytomas [16]. Multiple tumors in the target

organs are caused by a germline VHL gene mutation

followed by a loss of the wild-type allele [17]. Pancreatic

nonfunctioning NETs are seen in 12–17% of VHL

patients [18,19�]. Loss of heterozygosity at 3p25.5 gene

locus is documented in only 30% of sporadic pancreatic

NET and is usually not accompanied by somatic VHL
gene mutation [20]. These data indicate that the

VHL gene does not play a role in sporadic pancreatic

NET development and that another gene telomeric to

the VHL 3p locus may be involved [21�]. Neurofibro-

matosis, von Recklinghausen’s disease (NF-1), belongs

to a group of diseases called phakomatoses and is an

autosomal dominant disorder that is clinically charac-

terized by the presence of café au lait spots on the

skin, cutaneous or subcutaneous neurofibromas, optic

gliomas, benign iris hamartomas and specific dysplastic

bone lesions [22]. Patients with NF-1 may also develop

ampullary carcinoids, duodenal and pancreatic somatos-

tatinomas as well as pheocromocytomas and paragan-

gliomas. The NF-1 gene is a tumor suppressor gene that

is located on 17q11.2 and encodes a protein called

neurofibromin. The latter is also linked with genes

responsible for TSC regulating especially TSC2 through

the mammalian target of rapamycin (mTOR) pathway

[23]. It has been shown that NF-1 acts as a negative

regulator of mTOR, and therefore, LOH of the NF-1
gene results in loss of neurofibromin expression,

resulting in mTOR activation and possibly tumor

development.

TSC is an autosomal dominant disease that also belongs

to the phakomatoses. The patients develop hamartomas

and astrocytomas together with well differentiated

tumors in the brain, heart, skin, kidney, lung and pan-

creas [24]. The genes that are associated with TSC are

TSC1, located on 9q34 and TSC2, located on 16p13.3 and

they encode the proteins hamartin and tuberin, respect-

ively. Various studies have shown LOH of these genes’
orized reproduction of this article is prohibited.
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expression in TSC-associated tumors indicating a tumor

suppressor role [25,26].
Sporadic endocrine pancreatic tumors:
molecular genetics and pathobiology
Genome-wide analyses by comparative genomic hybrid-

ization (CGH) indicate that the chromosomal losses occur

slightly more frequently than gains, whereas amplifica-

tions are uncommon [27,28]. Genetic alterations seem to

accumulate during tumor progression. A total number of

genomic changes per tumor appear to be associated with

both the tumor volume and the stage of the disease [29].

Thus, large or malignant tumors or both, and especially

metastasizes harbor a larger number of genetic alterations

than small and clinical benign neoplasms [29,30]. Losses

of chromosome 1 and 11q as well as gains of 9q appear to

be early events in the development of pancreatic tumors

because they are already present in small tumors (<2 cm)

[29]. These findings point towards a tumor suppressor

pathway and chromosomal instability as important mech-

anisms associated with malignancy in pancreatic endo-

crine tumors. Variation of genetic changes in functioning

versus nonfunctioning pancreatic NETs has been

demonstrated in small tumors (<2 cm in diameter) by

CGH [30]. Gains of chromosome 4 and losses of 6q were

observed in about 50% of functioning tumors, the

majority being insulinomas with a size less than 2 cm [30].

A recent study using genome-wide single nucleotide

polymorphism (SNP) analysis showed that about 60%

of pancreatic endocrine tumors had high genetic imbal-

ances defined by more than four chromosomal aberra-

tions. These tumors were larger than those with lower

aberrations [31�].

Homozygous deletion or hypermethylation of the 50

region of p16/MTS1 or a deletion of the p16INK4a tumor

suppressor gene on chromosome 9p21 was demonstrated

in sporadic gastrinomas [32,33]. p16INK4a gene alterations

were not observed in insulinomas [34]. These findings

suggest that other potential tumor suppressor genes on

chromosome 9p are involved in pancreatic neuroendo-

crine development and imply that p16/MTS1 or p16INK4a

defect is restricted to gastrin-producing tumors.

Retinoblastoma gene defects on chromosome 13q were

not observed in any type of pancreatic NETs [35]. Both

benign and malignant insulinomas demonstrated high

LOH rates for markers on chromosome 22q (93%) [36].

Cyclin D1 overexpression was observed by both immu-

nohistochemistry and northern blot analysis in 43% of

pancreatic NETs [37]. Promoter region CpG island

methylation of the estrogen receptor (ER) gene has been

documented in nine out of 11 pancreatic NETs [36].

Methylation for the Ras-associated domain gene family
opyright © Lippincott Williams & Wilkins. Unautho
1A (RASSF1A) has been reported in 75% of well differ-

entiated endocrine pancreatic tumors and methylation of

O6-MGMT was noticed in 40% of the cases [38,39].

As RASSF1A gene mutation is very rarely observed

in human cancer, these findings strongly support the

methylation mechanism for multiple gene inactivations

in pancreatic NET and suggest that the ras pathway is

involved via RASSF1A methylation [40]. Activation in

the ras family of the proto-oncogenes, K-ras, H-ras and

N-ras is absent or exceedingly rare in large series of

pancreatic NETs. Thereby, the ras oncogene does not

play a direct role in the development of most pancreatic

NETs with possible exception for some malignant insu-

linomas [41,42].

Well differentiated NETs only rarely contain p53

mutations [43,44]. Poorly differentiated neuroendocrine

carcinoma of any site shows high chromosomal instability

and frequent p53 changes [45]. It is likely that p53

alteration is not involved in pancreatic NET initiation,

but represents a late progression event in poorly differ-

entiated neuroendocrine carcinoma of the pancreas.

Allelic losses for chromosome X markers are frequently

observed in malignant, but not benign pancreatic NETs

[46].

Published data suggest that multiple genetic defects may

accumulate and result in pancreatic NET progression and

malignancy. LOH for markers of several different onco-

suppressor genes was significantly more common in

malignant (40%) than in benign (17%) tumors [47]. More

frequent genomic aberrations in metastases than in cor-

responding primary tumors has been reported in a study

[30]. In nonfunctioning pancreatic NETs, a high fre-

quency of loss of chromosomal markers correlates with

aneuploidy and a poor clinical outcome [48]. In a recent

study [49�] of pancreatic endocrine tumors, analyzing the

expression of 112 genes could clearly separate a benign

from a malignant gene cluster, further supporting the

clinical value of the WHO classification.
Gastric and duodenal neuroendocrine tumors
Both familial and sporadic, benign and malignant NETs

of the stomach and duodenum display frequent LOH for

the MEN1 locus at 11q13 [50,51]. LOH of the MEN1
locus was demonstrated in 75% of gastric enterochroma-

ffin-like (ECL) carcinoids in 23 familial cases and in 41%

of 46 sporadic cases [52]. Four out of five poorly differ-

entiated tumors of the stomach showed allelic losses of

the MEN1 gene [53]. 11q13 LOH was accompanied by a

somatic mutation in the MEN1 gene in 33% of sporadic

gastrinomas, regardless of metastases [54]. These data

support the initiating role of the MEN1 gene in the

development of many foregut gastric carcinoids and

duodenal gastrinomas.
rized reproduction of this article is prohibited.



C

Neuroendocrine gastrointestinal and pancreatic tumors Öberg 75
Frequent and diffuse allelic imbalances of multiple chro-

mosomal markers have been reported in aggressive,

poorly differentiated tumors of the stomach. Extensive

losses of X chromosomal markers were shown in malig-

nant tumors, but absent in benign foregut NET [55].
Gastrointestinal endocrine tumors
(carcinoids)
Knowledge about the genetic background of sporadic

gastrointestinal NETs is even sparser than that of pan-

creatic endocrine tumors. Only three studies using CGH

or 131 microsatellite LOH markers examined genome-

wide allelic imbalances in gastrointestinal NETs [56–

58]. The average number (2.9) of genomic changes was

lower in gastrointestinal NETs than in pancreatic tumors.

There was no clear correlation between the number of

aberrations and tumor stage [58]. Furthermore, the num-

ber of different chromosomes involved was low, genetic

alterations apparently being concentrated on chromo-

some 18 [56]. The loss of the entire chromosome 18 or

of its long arm in 38% of gastrointestinal NETs has been

reported. Losses at 18q22 q-ter have been reported in

67% of midgut carcinoids and losses in 50–88% of tumors

in other studies [56,59]. The high percentage reported by

Lollgen et al. [56] is based on microsatellite LOH analysis

in which small deletions are detected with a higher

sensitivity than obtained by CGH. The loss of chromo-

some 18 in gastrointestinal NETs is a strong evidence

that important candidate tumor suppressor genes are

located on this chromosome. Losses of 9p, which are

detectable in 50% of gastrointestinal NETs, are rare in

pancreatic tumors. Due to the frequent allelic losses on

chromosome 18q, the candidate genes DPC4, DCC and

Smad2 have been analyzed. In most studies, no mutations

have been detected in DPC4, DCC and Smad 2 [56].

Therefore, other possible tumor suppressor genes located

on chromosome 18q remain to be investigated. Patients

suffering from MEN1 often develop NETs, most of

which are localized in the duodenum and the stomach.

Allelic loss of the corresponding chromosomal arm 11q

has been detected in these types of endocrine tumors

associated with the MEN1 syndrome. Somatic MEN1

mutations have been detected in a small subset of NETs

of the ileum and colon indicating that these mutations are

not restricted to foregut NETs, but they also occur rarely

in midgut and hindgut tumors [12].

The tumor suppressor genes p16INK4a and TP53 shows no

mutations. However, methylation of p16INK4a was sig-

nificantly more frequent in gastrointestinal NETs than in

pancreatic tumors and, thus, represents an additional

molecular difference between the two tumor groups

[38]. The higher rates of promoter methylation of the

APC, MEN1, HIC1 and RASSF1a genes in gastrointesti-

nal NETs than in pancreatic tumors are also reported in a
opyright © Lippincott Williams & Wilkins. Unauth
recent study [60�]. The high rate of RASSF1a promoter

methylation might explain the frequent expression of

extracellular signaling-related kinase (ERK) 1/2, an

important downstream point of convergence in the ras-

RAF-mitogen-activated protein ERK pathway [61].

About 25% goblet cell carcinoids present TP53 mutations

[62]. The most frequently reported mutated gene in

GI-NETs is b-catenin. Mutations in exon 3 of this gene,

protecting the corresponding protein from phosphoryl-

ation and degradation, have been reported in 38% of

GI-NETs [63]. However, nuclear translocation of

b-catenin has been reported in only 30% of GI-NETs

with absence of exon 3 mutations [64]. Overexpression of

cyclin D1 and cMyc may be a downstream effect of the

alterations of the Wnt signaling pathway [15]. Recently, a

novel molecular pathway has been identified that links the

homeobox gene Hoxc6 with oncogenic signaling through

the activator protein-1 pathway through interaction with

JunD [65�]. In a recent study, candidate marker gene

expressions were analyzed using Affymetrix transcrip-

tional profile [66]. Small intestinal carcinoid overexpress

the neoplasia-related genes NAP1L1 (mitotic regulation),

MAGE-D2 (regulate adhesion) and MTA1 (estrogen

antagonism). These marker genes seem to be correlated

to malignant behavior of small intestinal carcinoids.

IL-6 is a pleiotropic cytokine with a still controversial role

in tumorigenesis in different cancer types. A recent study

reports increased serum IL-6 levels in 37% of GEP-

NETs. High serum IL-6 levels correlated with GG IL-

6-174 genotype and were significantly higher in nonfunc-

tioning GEP-NETs compared with healthy controls

[67�].
Conclusion
Molecular profiling of gastroenteropancreatic endocrine

tumors demonstrates that pancreatic endocrine tumors

and gastrointestinal neuroendocrine tumors display

different genetic changes and should, therefore, be

considered to be different tumor entities, thereby, also

differently managed clinically. The data on gene

expression in the different subtypes of neuroendocrine

tumors are still sparse, and it is important to provide

studies in larger tumor materials to delineate subtypes

of neuroendocrine tumors on genetic bases. A recent

study in pancreatic tumors has been able to demonstrate

differences in gene profiling between malignant and

benign tumors. Although the number of genetic

changes is higher in malignant tumors, we are still far

away from defining a malignant profile in GEP-NETs

[68�].

This will hopefully lead to improved treatment in the

future. A summary of different genetic changes fre-

quently found in GEP-NETs is found in Table 2 [69�].
orized reproduction of this article is prohibited.
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Table 2 Genetic changes frequently found in gastrointestinal and pancreatic neuroendocrine tumors

Gene(s)

Involvement

Frequent Rare Absent

Genes characterizing endocrine tumor syndromes MEN1 PET, D GI, I,
VHL PET
NF-1
TSC-1/2
HRPT-2 PET
SDHx PET, gasNET

Wnt signaling pathway b-catenin gasNET PET
APC gasNET

TGF-b signaling pathway TGFbR2 PET, gasNET
Smad4 PET
Smad3 PET

Common tumor suppressor genes/oncogenes DCC PET, gasNET
p53 PET, gasNET
PTEN PET
K-Ras PET, gasNET

Mechanisms of tumorigenesis CIMP pathway gasNET PET
Chromosomal instability PET gasNET
MSI PET, gasNET

CIMP, CpG island methylator phenotype; D, duodenal endocrine tumor; GEP-NET, gastroenteropancreatic neuroendocrine tumor; gasNET
gastrointestinal neuroendocrine tumor; GI, gastrointestinal neuroendocrine tumors; I, ileal endocrine tumor; MSI, microsatellite instability; PET,
pancreatic endocrine tumor. Reproduced with permission [69�].
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