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Purpose of review

Gastroenteropancreatic neuroendocrine tumors (GEP NETs) are relatively rare

neoplasias arising from the embryonic neural crest, neuroectoderm and endoderm. GEP

NETs occur either sporadically or as part of endocrine tumor susceptibility syndromes

such as multiple endocrine neoplasia type 1 (MEN1), von Hippel Lindau (VHL)

syndrome, neurofibromatosis (NF-1), and possibly tuberous sclerosis (TSC). The overall

incidence of GEP NETs shows a significant increase over the past three decades.

Improved understanding of the molecular genetics associated with these lesions will

likely enhance the diagnosis and treatment of patients with GEP NET.

Recent findings

The molecular and clinical genetics of familial GEP NETs have been further elucidated

by the characterization of the tumor suppressor genes, MEN1, VHL, NF-1, TSC1, and

TSC2. The vastly improved technology in the field of cancer genetics with higher

resolution of the study of genetic alterations, and the ability of unbiased mutational

analyses of entire tumor genomes is likely to further the understanding of the genetic

mechanisms of sporadic GEP NET as well.

Summary

Recent advances in the molecular genetics of sporadic and familial GEP NET are

reviewed.
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Introduction
Tumors that are derived from the diffuse neuroendocrine

system of the gastrointestinal tract and pancreas are fairly

rare. They occur in tissues that contain cells derived from

embryonic neural crest, neuroectoderm, and endoderm.

They, therefore, occur throughout the entirety of the

body, albeit with a predilection for the lung and bronchus

and the gastro–enter–pancreatic axis. Siegfrid Obern-

dorfer first coined the term karzinoide (carcinoid; cancer-

like) in 1907. Gastroenteropancreatic neuroendocrine

tumors (GEP NETs) include gastrointestinal carcinoids

(also known as gastrointestinal NETs; GI NETs), as well

as the neuroendocrine tumors of the pancreas (PNETs).

GEP NETs are relatively rare in contrast to adenocar-

cinomas, with an annual incidence of approximately 2.5

to five new cases per 100 000 [1]. However, a substan-

tial increase in the incidence of these tumors has

occurred over the last 30 years, with 460–720%

increased prevalence [1]. Although the exact mechan-

ism for this finding is unclear, advancements in
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technologies such as endoscopy and imaging tech-

niques are likely to have contributed to the increased

diagnosis of GEP NET. Although GEP NETs are

increasingly being diagnosed, a concomitant improve-

ment in outcomes has not been noted. The 5-year

overall survival for all carcinoids and intestinal carci-

noids in the United States between 1973 and 2002 has

remained at 60% [1]. It should be pointed out, how-

ever, that there exists significant heterogeneity in out-

comes between various groups of GEP NET. This is

exemplified by 5-year survival rates of 97 and 30%

for benign pancreatic insulinomas vs. nonfunctioning

endocrine pancreatic tumors, respectively [2].
Familial gastroenteropancreatic
neuroendocrine tumors
Although a majority of GEP NETs are sporadic, the

molecular and clinical genetics of tumor susceptibility

syndromes, in which GEP NETs may occur, have con-

tributed to the understanding of tumorigenesis in these

patients.
orized reproduction of this article is prohibited.
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Table 1 Gastroenteropancreatic neuroendocrine tumors

associated with MEN1 and their approximate penetrance

Tumor type Penetrance (%)

Enteropancreatic tumors
Gastrinoma 40
Insulinoma 10
Nonfunctioning 20
Other (glucagonoma, VIPoma, somatostinoma) 2

Foregut carcinoids
Gastric carcinoids 10
Thymic carcinoid 2
Bronchial carcinoid 2

VIP, vasoactive intestinal peptide.
Multiple endocrine neoplasia type 1

Multiple endocrine neoplasia type 1 (MEN1; OMIM

131100) is an autosomal dominant endocrine tumor

susceptibility syndrome causing tumors of the parathyr-

oid, enteropancreatic endocrine tissue, and anterior pitu-

itary [3]. MEN1 is relatively rare (approximately one in

30 000), and a consensus definition of MEN1 is used

widely [4]. An MEN1 case has tumor in two of the three

principal organs (parathyroid, enteropancreatic endocrine

tissue, and anterior pituitary). Similarly, familial MEN1 is

defined as one MEN1 case plus one first-degree relative

with one of the three principal tumors. GEP NETs are

the second most common manifestation of MEN1 after

primary hyperparathyroidism and include a spectrum of

tumors with variable penetrance in the disease (Table 1).

The MEN1 gene, localized at chromosome 11q13, was

identified by positional cloning [5,6]. Germline MEN1
mutation is identifiable in 70–90% of typical MEN1

families, and some without an identified mutation may

have large deletions or intron mutations not recognizable

by polymerase chain reaction. The importance of MEN1
gene inactivation in tumorigenesis is further substan-

tiated by the fact that sporadic tumors, including GEP

NETs, parathyroid adenomas, and bronchial carcinoid

frequently harbor MEN1 gene mutations [5–12]. The

patterns of germline and somatic mutations in MEN1 are

similar, and approximately 80% predict truncation or

absence of the encoded menin. There is no strong pattern

of genotype/phenotype relations among germline and

somatic MEN1 mutations.

Menin is a 67-kDa protein, widely expressed, located in

the nucleus, but also detected in cytoplasm and about

telomeres [13]. Sequence analysis shows no homologous

proteins. Through various protein interaction studies,

menin has been suggested to partner with a number of

other proteins such as transcription factors, DNA repair

factors, cytoskeleton-associated proteins, among others

[14–22]. Although the potential protein partners vary in

function, most of them are nuclear proteins, generally

involved in transcriptional regulation. The role of menin

in transcriptional regulation was further substantiated as a

large menin complex was demonstrated to exhibit lysine-4
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histone methyltransferase activity, and that menin can

directly bind to DNA [23,24]. Additionally, menin acts

as a molecular adaptor linking the mixed-lineage leukemia

(MLL) histone methyltransferase with lens epithelium-

derived growth factor (LEDGF) [25�]. A recent study

demonstrated that MEN1-causing missense mutations

lead to a loss of function of menin due to enhanced

proteolytic degradation, which may be a mechanism for

inactivating menin as a tumor suppressor [26]. Heterozy-

gous knockout of Men1 in mice provides an excellent

model of MEN1 [27–29]. Mice develop normally, but

by 16 months frequently develop parathyroid tumors,

insulinomas, and prolactinomas. Interestingly, insulino-

mas in these mice can develop in the absence of chromo-

some instability or microsatellite instability [30]. In a

recent study on MEN1 patients, however, Perren et al.
[31�] found that loss of heterozygosity (LOH) of the

MEN1 locus in all 27 endocrine pancreatic microadenomas

and 19 of 20 (95%) monohormonal endocrine cell clusters.
von Hippel Lindau syndrome

The von Hippel Lindau (VHL; OMIM 193300) disease is

an autosomal dominant neoplasia syndrome that results

from germline mutations in the VHL gene [32]. These

mutations lead to the development of several benign or

malignant tumors and cysts in many organs. VHL is

characterized by predisposition to develop hemangioblas-

tomas of the retina and central nervous system (CNS),

renal cell carcinomas and renal cysts, pheochromocytomas,

endolymphatic sac tumors, as well as pancreatic lesions

with marked phenotypic variability. Although cysts are the

most common lesion (33–70%) in the pancreas in patients

with VHL, endocrine pancreatic tumors occur in 11–17%,

and have malignant potential [33].

The VHL gene is a tumor suppressor gene on the short

arm of chromosome 3 (3p25–26), with three exons encod-

ing the VHL protein [34]. The VHL protein shuttles

between the nucleus and cytoplasm, binding to elongin

C, elongin B, Cul2, and Rbx1, and degrades alpha sub-

units of hypoxia-inducible factor in an oxygen-dependent

manner [35]. Lack of degradation of this factor due to

absence of the VHL protein results in uncontrolled

production of factors promoting formation of blood

vessels such as vascular endothelial growth factor impli-

cated in tumor development [35]. Germline mutations in

the VHL gene are extremely heterogeneous and are

distributed widely throughout the coding sequence

[32]. They are now identifiable in virtually all families

with VHL [32]. The exact molecular mechanism of GEP

NET development in VHL is unknown. Analyses of

allelic loss identify genetic loci distinct from and mapping

proximal to VHL within human chromosome 3p VHL

kindred under study. Furthermore, chromosome 3p LOH

occurs subsequent to VHL mutation and cyst formation
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and correlates with malignant progression in VHL-

associated GEP NET. These findings suggest that

additional genetic alterations, possibly in a stepwise

fashion, cause GEP NET in the VHL syndrome [36].

Neurofibromatosis type 1 and tuberous sclerosis

Neurofibromatosis type 1 (NF-1; OMIM 162200) and

tuberous sclerosis (TS; OMIM 191100) are both rare

autosomal dominant tumor susceptibility syndromes.

Ampullary carcinoids, duodenal and pancreatic somato-

statinomas, and nonfunctioning GEP NETs have

occasionally been reported in such kindreds [37,38].

NF-1 and TS are caused by inactivating mutations in the

tumor suppressor genes NF1 (17q11.2), TSC1 (9q34), and

TSC2 (16p13.3), respectively. NF1 encodes the protein

neurofibromin, which also regulates TSC1 and TSC2
through the mammalian target of rapamycin (mTOR).

Loss of function of the NF1 gene causes mTOR acti-

vation and tumor development [39]. Interestingly, dis-

ruption of TSC2 in pancreatic beta cells induces beta cell

mass expansion in an mTOR-dependent manner [40].
Sporadic gastroenteropancreatic
neuroendocrine tumors
Through the clinical and molecular genetic studies of

kindreds with GEP NETs, the underlying alterations in

these families have been characterized. In contrast, less is

known about the genetic mechanism of sporadic GEP

NETs, although genes involved in their familial counter-

parts also play a role in the molecular pathology of

sporadic tumors. There exist both similarities and differ-

ences in the tumorigenesis of various types of GEP

NETs, and is here discussed in two broad groups, those

that arise in the pancreas (PNETs) and the gastrointes-

tinal tract (GI NETs) [41].
Sporadic endocrine pancreatic tumors
(neuroendocrine tumors of the pancreas)
The occurrence of chromosomal gains, or losses, or both

have been extensively studied in PNETs, by LOH

analysis, comparative genomic hybridization (CGH), and

array CGH analyses. Allelic loss is most commonly seen at

chromosome loci 1p(23–75%),1q (20–88%),3p (25–62%),

11p (29–52%), 11q (28–66%), and 22q (38–93%), although

manyother loci throughoutthegenomeshow LOHinmore

than 20% of the tumors [10–12,42–44]. As noted, LOH at

11q13 is common, and MEN1 gene mutations have been

identified in sporadic gastrinomas, insulinomas, glucago-

nomas, VIPomas, and nonfunctioning tumors. The overall

incidence of MEN1 gene mutations in sporadic PNETs

varies between 13 and 38% [11,12,43,44]. In contrast, the

VHL gene seems not to be mutated in sporadic PNETs

[45]. DPC4/SMAD4 mutations are seen in about 20% of
opyright © Lippincott Williams & Wilkins. Unauth
sporadic PNETs [46]. Deletions on chromosome 1, 3p, 6,

11q, 17p, 21q, and 22q as well as gains on chromosomes 4, 7,

14q, and Xq have been associated with malignancy in

sporadic PETs [47]. Additional attempts to distinguish

benign from malignant PNETs used genomewide expres-

sion microarray studies revealing more than three-fold

overexpression of 66 transcripts including IGFBP3, which

is deregulated in many tumor types. Underexpression

(>three-fold) was seen for 119 transcripts, including p21,

O6-MGMT, and JunD [48]. When comparing benign and

malignantPETs, O6-MGMT was downregulated inmalig-

nant tumors and the protooncogene MET was upregulated

together with IGFBP1 and IGFBP3 [49]. More recently,

Duerr et al. [41] using a DNA microarray analysis and

hierarchical clustering of 19 PNETs revealed a ‘benign’

and ‘malignant’ cluster. FEV, adenylate cyclase 2

(ADCY2), nuclear receptor subfamily 4, group A, member

2 (NR4A2), and growth arrest and DNA-damage-induci-

ble, beta (GADD45b) were the most highly upregulated

genes in the malignant group of PNETs.

Sporadic gastrointestinal carcinoids

(gastroenteropancreatic neuroendocrine tumors)

Similar to PNETs, chromosomal gains, or losses, or both

have been studied in GI NETs using LOH analysis,

CGH, and array CGH analyses. Loss of chromosome 18

and, to a lesser extent, loss of chromosome loci 9p and 16q

are the most common genetic alterations of GI NETs.

Amplification of chromosomal loci is less common in GI

NETs than in PNETs and other endocrine tumors, but

occurs most frequently on chromosomes 4, 5, 7, 14, 17,

and 20 [50�,51–56]. Interestingly, recent findings of

genetic alterations in GI NETs using high-resolution

array-based CGH analysis are similar to earlier studies

using conventional CGH analysis [50�].
Conclusion
Despite the improved understanding of the molecular

genetics of familial endocrine neoplasia syndromes, the

exact mechanism of GEP NET development is still

unclear. With improved technology in the field of cancer

genetics, such as large-scale sequencing of entire tumor

genomes [57,58], it is likely that significant advancements

will occur in the understanding of GEP NET, as well.

Further studies of gene function may lead to develop-

ment of novel therapeutic modalities.
References and recommended reading
Papers of particular interest, published within the annual period of review, have
been highlighted as:
� of special interest
�� of outstanding interest

Additional references related to this topic can also be found in the Current
World Literature section in this issue (pp. 88–90).

1 Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendo-
crine tumours. Lancet Oncol 2008; 9:61–72.
orized reproduction of this article is prohibited.



C

32 Endocrine tumors
2 Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin
Gastroenterol 2005; 19:753–781.

3 Carling T. Multiple endocrine neoplasia syndrome: genetic basis for clinical
management. Curr Opin Oncol 2005; 17:7–12.

4 Brandi ML, Gagel RF, Angeli A, et al. Guidelines for diagnosis and therapy of
MEN type 1 and type 2. J Clin Endocrinol Metab 2001; 86:5658–5671.

5 Chandrasekharappa S, Guru S, Manickam P, et al. Positional cloning of the
gene for multiple endocrine neoplasia type 1. Science 1997; 276:404–407.

6 The European Consortium, et al. Identification of the multiple endocrine
neoplasia type 1 (MEN1) gene. Hum Mol Genet 1997; 6:1177–1183.

7 Carling T, Correa P, Hessman O, et al. Parathyroid MEN1 gene mutations in
relation to clinical characteristics of nonfamilial primary hyperparathyroidism.
J Clin Endocrinol Metab 1998; 83:2960–2963.
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